Empirical Analysis of Traditional Link Prediction Methods

نویسندگان

  • Tao Zhou
  • Tsung-Ting Kuo
  • Rui Yan
  • Yu-Yang Huang
  • Perng-Hwa Kung
  • Shou-De Lin
چکیده

Online Social Networks are growing exponentially due to which a lot of researchers are working on Social Network analysis. Link Prediction is a task of predicting new links that may occur in future in the social network. The link prediction problem has generated a lot of interest due its widespread applicability across many domains. We conducted a study on the different methods that have been developed for link prediction. In most of these methods, the social network is modeled as a graph, and the links are predicted based on the similarities between two nodes. We have chosen seven widely used similarity methods in our study. We found that on the simulated data sets, Sorenson index method and Jaccard coefficient method performed well when compared to other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Analysis of Traditional Link Prediction Methods

Online Social Networks are growing exponentially due to which a lot of researchers are working on Social Network analysis. Link Prediction is a task of predicting new links that may occur in future in the social network. The link prediction problem has generated a lot of interest due its widespread applicability across many domains. We conducted a study on the different methods that have been d...

متن کامل

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Matrix analysis of corrosion inhibition phenomena: Theoretical technique for inhibitor prediction and pre-selection

Matrix Analysis of Corrosion Inhibition Phenomena (MACIP), in which an inhibitor isconsidered as a point in a multi-dimensional virtual efficiency space, was performed on somepyridine derivatives. The needed molecular parameters such as HOMO and LUMO energylevels, charge densities on hetero atom, dipole moment, heat of formation, and total energyvalues were obtained by means of semi-empirical q...

متن کامل

Analysis of the Impact of Negative Sampling on Link Prediction in Knowledge Graphs

Knowledge graphs are large, useful, but incomplete knowledge repositories. They encode knowledge through entities and relations which define each other through the connective structure of the graph. This has inspired methods for the joint embedding of entities and relations in continuous low-dimensional vector spaces, that can be used to induce new edges in the graph, i.e., link prediction in k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016